Advanced Laser Photolysis of Caged Compounds

نویسنده

  • C. McDougall
چکیده

Caged compounds are biologically active molecules that have been rendered inert by the introduction of a photolabile protecting (caging) group to an important functional group. The intracellular photolysis of the caging group to reveal the active compound provides a powerful method for the intracellular release of biologically important molecules with exquisite temporal and spatial control. This technique therefore provides an ideal noninvasive tool for the study of many chemical, physiological and biological systems. The photolabile protecting groups used to cage the active compounds were first developed in the 1960’s for use in organic synthesis processes but were quickly adopted by biologists in the 1970’s to cage biologically relevant molecules such as ATP. Since then numerous compounds including chelators, neurotransmitters, fluorescent dyes, peptides, nucleotides, second messengers and enzymes have been caged using a variety of caging groups [1].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Confocal microscopic imaging of fast UV-laser photolysis of caged compounds.

Using a pulsed UV laser in a confocal scanning microscope, we present a relatively cheap, accurate and efficient method for fast UV laser flash photolysis of caged molecules in two-dimensional cultured neurons. The laser light is introduced through the imaging optics, can be localized by a parallel red laser and can photolyse a sphere of less than 1 microm2, and evoke local fluorescence changes...

متن کامل

Confocal imaging and local photolysis of caged compounds: Dual probes of synaptic function

Chemical signals generated at synapses are highly limited in both spatial range and time course, so that experiments studying such signals must measure and manipulate them in both these dimensions. We describe an optical system that combines confocal laser scanning microscopy, to measure such signals, with focal photolysis of caged compounds. This system can elevate neurotransmitter and second ...

متن کامل

Femtosecond Laser Microfabrication of an Integrated Device for Optical Release and Sensing of Bioactive Compounds

Flash photolysis of caged compounds is one of the most powerful approaches to investigate the dynamic response of living cells. Monolithically integrated devices suitable for optical uncaging are in great demand since they greatly simplify the experiments and allow their automation. Here we demonstrate the fabrication of an integrated bio-photonic device for the optical release of caged compoun...

متن کامل

Caged AG10: new tools for spatially predefined mitochondrial uncoupling.

The study of mitochondria and mitochondrial Ca2+ signalling in localised regions is hampered by the lack of tools that can uncouple the mitochondrial membrane potential (DeltaPsi(m)) in a spatially predefined manner. Although there are a number of existing mitochondrial uncouplers, these compounds are necessarily membrane permeant and therefore exert their actions in a spatially unselective man...

متن کامل

Flash photolysis of caged compounds in the cilia of olfactory sensory neurons.

Photolysis of caged compounds allows the production of rapid and localized increases in the concentration of various physiologically active compounds. Caged compounds are molecules made physiologically inactive by a chemical cage that can be broken by a flash of ultraviolet light. Here, we show how to obtain patch-clamp recordings combined with photolysis of caged compounds for the study of olf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007